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ON THE SOLUTION OF CONICAL SHELLS OF LINEARLY

VARYING THICKNESS SUBJECTED TO LATERAL NORMAL
LOADS*

C. H. Cuanc

University of Alabama, University, Alabama

Abstract—The solution of elastic conical shells of linearly varying thickness is hinged on an eighth degree charac-
teristic equation. In this paper, a method of solving this equation is presented which results in a general asymptotic
solution. The particular solution due to a lateral normal lqgad which is constant along meridians and has a
sinusoidal distribution in the circumferential direction is given. Included is also an illustrative example of a
semicircular cone which is simply supported along two generators with one end fixed and the other end free.

INTRODUCTION

THE theory of conical shells of linearly varying thickness in the framework of generalized
plane stresses of linear theory of elasticity along with a general approach of solving the
basic equations has been given in [1]. The three homogeneous equilibrium equations in
terms of three displacement components were solved by the classical method of separation
of variables; in turn the solutions were hinged on an eighth degree characteristic equation.
There are, however, no complete solutions available thus far. This is perhaps due to the
high degree of complexity involved.

In this work an attempt is made to get the solution to an extent that it is general and
usable for practical design purposes.

By recognizing the significance of a parameter which depends on the ratio of the
thickness to length, the characteristic equation given in [1] is presented in a different form.
A method which is approximate, but consistent with the theory, is proposed to solve the
equation.

An asymptotical solution is obtained. The solution consists of two parts: membrane
and bending. These two parts are coupled by the lateral displacements. It is found that
the order of magnitude of the displacements, stress resultants, and stress couples agrees
with that indicated in a general discussion by Steele [2].

Generally one would expect no difficulties in obtaining the particular solutions of the
system due to a lateral normal load. When the load is uniformly distributed along meridians,
the solution, however, is at a singularity of the system in the asymptotical case.t The
particular solution of such a case is given, including a numerical example.

The basic equations of the system are essentially given in [1}. For completeness and
comprehension, nevertheless, most equations will be symbolically repeated.

* The results presented here were a part of work performed in the course of research sponsored by George C.
Marshall Space Flight Center, NASA, under contracts NAS8-5168 and NAS8-11155 with University of Alabama.
+ Near the apex of a cone, there is another kind of singularity. See [3].
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BASIC AND CHARACTERISTIC EQUATIONS

Let 0, s be circumferential and meridional coordinates of the middle surface of an
isotropic conical cone and u, v, w be circumferential, meriodional, and normal displace-
ment components, respectively. Qutward w is positive. When the thickness of shell 4 is
proportional to s and independent of 6, one has

h = ds (1)

where 6 is a constant which for thin shells 1s very small. The elastic law assumes relation-
ships between the stress resultants and displacement components in the following forms:

Ed
Ns’ NO» ng, N()s = mlNl(u’ v, w)+kN2(u, v, W)l

Eé
17 k[ M(u, v, w)] 2)

Ms’ M()’ Msf)’ M6s = 1

in which Nq,..., My, are stress resultants and stress coupics per unit length; N, N,, and
M are functions of the displacements and their space derivatives; E is Young’s modulus
of elasticity; v is Poisson’s ratio; and

0‘2

k="
12

3
The elastic law (2) may be regarded as the result of series expansions of the stresses
and displacements in the parameter k with only the terms of zero and first order of k
retained.
By dropping the identical one, the other five equations of equilibrium are in a form

F(Ns“"sM()s’Qs’QeaPr»PssPG)=O (4)

where Q, and Q, are the transverse shear forces per unit length and P,, P, and P, are surface
loads per unit area in their respective directions.

When the lateral normal load P, only is considered* and Q, and Q, are eliminated
from (4), three equations result as follows:

fl(Ns" cet MGS) = Prsz(slr (5)

in which §,, is the Kronecker delta and the subscript / represents 6, s, and r.

Substitution of elastic law (2) for equations (5) results in three equations of equilibrium
in terms of the three displacements:

i )= sp,! .y 6)
u,v,w) = sP.——9,.
i, v Es &

Consider a segment of cone being bounded by ¢ = 0 and 0,(<2n) and s = L, and

L, L, < L. Introducing a nondimensional variable

e

* When the other load exists, one may follow a similar procedure and by superposition get the appropriate
solution.
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the displacement functions may now be assumed in the forms:

Ay _,Sin nno

U = n -

n cos 0,

By _Cos nnd

v = b

n sin 6,

cos nrt
w=Cyyn 1 8
" sin 0, (®)

in which 4,, B,, C, and A, are constants to be determined. Physically speaking, the upper
set of the sinusoidal functions in (8) is for a complete cone while the lower one is for a
segment of cone (f, < 2x) with two generator edges simply supported so that along 8§ = 0
and 6,

w=20, v =0, N,=0 and M,=0. . 9
The reactions along the two generator edges are given by
oM
Sy = Qp+ as"s at0 = 0 and 0, (10)

where S, is transverse shearing force at a section perpendicular to the 6 diMgtion. The
shearing force Q, may be obtained from equation (4).
Let

cos nrf

P, = pa(y) (11)

sin 0,
Substitution of this load function and assumed displacements (8) into equations (6) yields
the following three equations:

dllAn+d12Bn+d13Cn =0

dy A, +dy;B,+d,5C, =0 (12)

1—v?

dy A, +d3,B,+d3;C, = Lp,(y)y* ™ * ES

where d;; (functions of 4, material, and geometrical constants) are given in [1], (p. 400)
except signs of (+) shall be added to d,, and d, 5. These plus and minus signs correspond to
the upper and lower set of sinusoidal functions henceforth.

In order to have non-trivial homogeneous solutions of the system of equations (12),
the determinant of the coefficients must vanish. This results in an eighth degree charac-
teristic equation for /,. Neglecting the terms of second and higher powers of k as it has
been done in the derivation of elastic law (2), the characteristic equation is obtained in the
following form:

GlA} — 1022+ 91+ K[ A2 —geAs +8ahn — 8247 +80] = O (13)
in which

G = 16(1 —v?) tana (14)
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where a is the angle between a normal to the middle surface and the axis of the cone. The
coefficients gg, ..., g, in (13) are the same as those given in [1] {p. 401), but omitting the
terms with the parameter k. The terms with k& have been placed in the first bracket in (13).

In view of the approximation made in the derivation of equation (13), the following
approximate method of solution is suggested for this equation. Introducing

A2 = X,0+kX,, (15)

n

into equation (13) results in a sequence of equations associated with the various powers of
k. The equations associated with the two lowest powers of k are

X'2,0“10X"0+9 = 0
and
Xpo—86Xno+84X20—8:X0+80+2G(X,0—5)X,; =0

which give two sets of X, and X,,. Then equation (15) provides two roots of 42 which in
turn give four roots of 4,:

—86+84—82 +go)%

8G
9*—9%gs +9%¢,—9¢, +go)%
3G '

1
2

o '{n 3=
4

-

H

(16)

Substituting the two determined roots of A2 denoted by P (= )‘35 yand Q (= /1,2,2) into equa-

tion (13) yields a quadratic equation of 4> which gives the other four roots of /,,:

- 211 [ e8] 4
Anse = T 7(86_P“Q)i'[‘* ot "Z(ge_P_Q)] . (17
78 PQ k

Hence the eight roots of 4, group into two, four each. One group is of real numbers; the
other is of complex numbers.

The next step, as a routine, is to solve for 4, and B, in terms of C, for each root of 4, from
any two of the homogeneous equations of equations (12). The eight constants C, shall be
determined by eight conditions at y = ./(L,/L) and 1. The boundary conditions along the
generator edges are satisfied by the choice of sinusoidal functions of the angle 6. At the two
circular edges one has the following four boundary conditions at each edge. For a built-in
edge:

u =20, v=0, w =0, and Jw/ds =0 (18)
and for a free edge:
N, =0, M, =0, S, =0, and T, =0 (19)

where

M
T, = Ny——2tana (20)
S
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are the transverse and tangential shearing forces at sections perpendicular to the s-direction,
respectively. The shearing force Q, can be obtained from equations (4). For a simply
supported edge:
w =0, M, =0, N, =0, or v=20
and
T,=0 or u=0.

ASYMPTOTIC SOLUTIONS

As the parameter k approaches zero, the two groups of roots 4, reach at the following
asymptotic values:

/{1 = +1, /13 =13 (21)
2 4
is = p(1£i), Ay = —p(11i) (22)
6 8

where

|2
p= | BRI )
The subscript n has been and henceforth will be dropped for simplicity.

When the first group of 4, 4, (i = 1, 2, 3, and 4) is substituted into the first two equations
(12) to eliminate A4; and B;, and keeping only the leading terms, solutions (8) assume the
following forms:

“l_$mtana{ G G 1. G, Mg}smnne
m =1 m =2y w2 (1= 2v=m?) y*[cos 6, @
4
o' = tana Gy + 2C, 1+ 3C, 1 |cosnmf )
m =1 m2=2(1—v) y* m*=7+2v y*fsin 6,
0
w = {C+Cy 2+ C3y* +Cyy™ % C.OSE—
sin 0,

where

nm
m= —é—lsec o.
When the second group of 4, 4;(j = 5, 6, 7, and 8) is used following the similar procedure,
and using some identities to convert the complex expressions into real, one obtains the
following solutions:

1
W = F2Q2+v)mtan a;)—zy‘ Hy?[Cg cos(p In y)— Cs sin(p In y)] — y~?[Cg cos(p In y)

. sin nn@
—C,sin(pln y)]}cos e
1

v = —vtan rx%y‘ HyP[(Cs— Cg) cos(p Iny)+(Cs + Cg) sin(p In y)]

0
—y™?[(C + Cg) cos(p In y)— (C, — Cg) sin(p In y)]};‘:"gil (25)

. 0
W = = H{#[Cs cos(p In )+ C sin(p In )]+ »*[C; cos(p In y)+C sin(p In p)l} 2=
1
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It is noted that the solutions of the first group are simply those of membrane theory.
Based on solutions (24) and (25) one may establish the orders of magnitude of the
displacement componentst
1 .1 1 I 1
w,o,w,w = 0l
P

1 1
M= O(—) and "' = 0(70—2) (26)
p

Due to ', ¢, and w', the magnitudes of the corresponding stresses N%, Ny, and N,
obtained by use of relations (2) are also of the order of 1/p° and the moments are of 1/p?
and higher. The orders of magnitude of the stresses due to #", v", and w" are not quite
obvious and will be examined as foliows.

Changing the variable s to y according to (7) and then to # such that

y=n'" (27)
and using the displacements
u=u" = LU
p?
b=t =Ly (28)
S

w=wl=W

the elastic law (2), when the terms of lowest order of 1/p only are retained, leads to the
following expressions

Nl.l —_

Eé [1 oV
" _vz[ina+than a]

NI'= Eo [Wtana+lv QV}
=2 2 n@n

Ed 11[1 ou oV ]

NY% = Ny, = —N——+—=7seca

1+v2pl2'an 00
W W

MY = ESL tanza?[nza—nz+na—n]
MY = yMY

2ES 1 &w
MY = MY = mL tanza?nw sec o

in which the relation
4
k = Sl —v?) tan’a (30)

obtained from the expression (23) has been used.

t It is assumed as usual that the parameter m is limited to small values such that the differentiation with respect
to the 0 does not affect the order of magnitude. A study for large numbers of n was given by Steele [4].
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Note that the normal stresses N and N are of the same order as that of N and N},
It can be shown, however, that N} and N vanish identically.

Combining the two sets of solutions and when only the terms of the lowest order of 1/p
are retained, one has

u=u, v =1, w=w4+nl

Ns=Nis NozNg’ Ns0=Nes=N;0 (31)

Ms = M?’ MO = M:Jl’ Mso = Mos = Milo
Similarly, the transverse and tangential shearing forces defined by equations (10) and (20)
are

Se=5y, S,=8, T,=Ti=Ny. (32)

Thus the two parts of the solution, membrane and bending, are coupled by the lateral
deflection w; otherwise, they would be separabile.

In view of equations (31), (32), and (28), and when solutions (24) and (25) are used, the
stresses and moments may be given in the following final explicit forms:

C 3C cos nnd
N, = —2Edt [———2 Tt ‘4] o
5 e 0= Tmi—7+2v" |sin 0,

N, = Edy~ ! tan a{y?[C; cos(p In y)+ C, sin(p In y)]

. 0

+y79[C, cos(p In y)+ Cy sin(p In )]} <>

sin 6,
6tana sin nnf
=T =7 - - = -4 -
Now =T, +Eé{m(m2—7+2v) +¥ }cos 6,

2E6 .
M, = —-tan?a Ly{y*[C cos(p In y)— Cs sin(p In y))
P

cos nnf

+y [ ~Cgcos(plny)+C,sin(pln )]} . —— (33)
sin 6,
M9=VMS
_2Eb 2. —1fup .-
Se = +~;2—m(2—v) tana y~ H{y?[Cq cos(p In y)— Cs sin(p In y)]
+y ?[~Cgcos(pIn y)+ C, sin(p In )]}sin 0
y s Cos(pIn y)+Cs sinfp In y)]} o

Eé .
S, = 7)‘ tan’a y ™ H{)?[(— C5 + Cé) cos(p In y) —(C5 + C¢) sin(p In y)]

. cos nrl
+y7?[(C5 4 Cg cos(p In y) —(C, + Cy) sin(p In y)]} sin 0
- 1
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and
s ds
1 .
= 5PV HYUCs + Cg)cos (p In y) —(Cs— C) sin(p In y)]
cos nnd
“P[(C5—=Cg)cos(p In y)+(C; + Cg) sin(p In Y)]} n 0.
1

PARTICULAR SOLUTIONS DUE TO LATERAL NORMAL LOADS

Let the lateral normal load given by (11) be confined to the form

Pe(y) = pLPy* (34)

where p, and f are prescribed constants.
One may assume a set of particular solutions in the similar form as given by expressions
(8) except 4,. In this case 4, shall be replaced by

A% = 2f+3 (35)

a known number. By solving the three algebraic equations (12) simultaneously, the par-
ticular solutions are then readily obtained, provided that 1* is not one of the roots of the
determinant. However, when the load is uniformly distributed along meridians, f = 0 and
A* = 3, which is one of the roots at the asymptotic case. In such cases, the approach needs
to be modified. Since this is one of the most common loadings, the particular solution for
this kind of uniform load will be given.

Because in this case A* is a finite constant as the parameter k approaches zero, the
corresponding particular solution may be obtained from the equations of membrane theory
of the system.

Setting k = 0 and having the independent variable s transformed to y, equations (6)
reduce to the following equations of equilibrium of membrane theory:

1—v[ ,0% ou | 1+v 0%u 0%u ov
—|y? 3y6y 8u| + R seca+——seccx+(2—v)—seca

8 ay? dy 00 062
+ % secatan o = 0
g Secatana =
1+v J%u 3 ou 1 ,0% 3 ov
—_— et § Y 36
§ 7y 053 Wzgsecatyy a4y (36)
1—v ¢? 1 ow
zvaisec a~—(1—v)v+2vy5;tana—(1~v)wtana-0
ou 1 ov 1 —v?
—secou+=vy—+v+wtano = ——Lp,y>

0 27y Eo
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where

cos nnd
Pr=DP . - (37)
sin 6,

Let the particular solutions of equations (36) be assumed as below:

P _ T ZSinﬂ[g

W= Fld+dyInyy” b,

b zcos@ 38
vP = (b, +b, Iny)y sin 0, (38)
P _ o141 yy? <5

vo=a YV sin 0,

in which d,, d,, b,, b,, and e, are constants to be determined. When these assumed solutions
are substituted into equations (36) and after the sinusoidal functions and y? are cancelled,
one will have three equations

Lp, 1—v?
tano ES

Jny+H, = S (39)

where J, and H, are expressions of the physical and to-be-determined constants.
By making the coefficients of both sides of equations (39) equal, there are two sets of
algebraic equations, each containing three equations:

J,=0 (40)
and
Lp, 1—v?
" tana E§ " (41)

Only two of equations (40) are independent because i* = 3 is one of the roots of the
determinant. Thus, the five constants may be determined by the five independent equations
of (40) and (41). This results in

P — Du Lm 1 4 2 2 ZSin nnd
= — ——[2m*-3(5— -3t -7 —
u +tanaE5 3{2"'2[ m (S—vim*=3(1+v)+(m +2WIny¢y cos B,
P P Ll oy cosnd 0
v tana Eé 6[3(1 2v)=m’ly sin 6, “42)
P pn L1 , cos nnf
= — = —T7+2v](1+ 1 —
Y T lanZa E6 3 L 2+ ny)sin 0,
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When these displacements are substituted into the expressions (2) with k& = 0, the corres-
ponding stresses are
pol 1

tanag

0
(B-myr T

N! =
sin 0,

s

L cosnnb
tano” sin 0,

p.L m 2 8In nnt

NP — —.
7 “tana 37 cos 6,

i

These particular solutions combined with those given by solutions (24), (25), and (33)
constitute the complete solutions.

AN EXAMPLE

For purpose of illustration, take a truncated semicircular cone with the two generators
simply supported. Thus the lower set of the solutions are to be used. Let it be clamped at
the smaller end at s = L, and free at the other end where s = L so that

u—u—w—aw—O t —\/(Ll)
SUPEWES T V=L (44)

N,=T,=M;=8,=0 aty = 1.

By making use of the first two in each of the foregoing two sets of boundary conditions,
constants C,, C,, C;, and C, can be determined; then the other four constants can be
determined by the remaining four boundary conditions.

For numerical computations, the following values are assumed

L
o = 75°, v =1 \/ !

L
Considering t/R as a parameter where R is the principal radius at a section of thickness ¢,
one obtains § = (t/R)cos o. The eight roots of A computed from expressions (16), (17),
and expressions (21), (22) for asymptotic values for n = 1 and 2 are listed in Table 1.

= (-90. {45)

TABLE |. THE VALUES OF A

, t Asymptotic
A R n=1 n=2 values
A 0-004 +1-999999 +10523 +1
2 0-006 +0:999997 +1-1142 +1
0-008 2-0-999995 +1-1955 +1
A 0004 +3-00003 +2:9851 +3
: 0-006 +3-00007 +29663 +3
0-008 +3:00013 +29397 +3
A 0-004 +153-27(1-0027 + i) +152-75(1-0099 + i) +153-48(1 +1)
Y 0-006 +125:09(1-0035 + i) +124-51(1-0149 + i) +12532(1 +1)

68

0-008 +108-28(1-0045 + i) +107-77(1-0198 + i) +108:53(1+14)




On the solution of conical shells of linearly varying thickness subjected to lateral normal loads 187

The asymptotic solutions of displacements, stresses, and moments computed may be

given in the form:

in which the function g,(y) are presented in Figs. 1-7.

DISPLACEMENT x s

DISPLACEMENT x5

Fi1G. 3. Displacements #, v and w (n = 2).

sin nnd
G,(y,0) = — n=1and?2 46
A:0) = &ly) o 2, (46)
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F1G. 6. Transverse shearing force S,.
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FiG. 7. Normal moment M.

When n = 1 the solution represents the response to a symmetrical lateral load. By a
proper combination of solutions of n = 1 and 2, one may have the response to an asym-
metrical load as shown in Fig. 8.

() ' (b)
F1G. 8. (a) The symmetrical load. (b} The asymmetrical load.

CLOSING REMARKS

A number of approaches for solutions of shells of revolutions are available. A recent
one was presented by Kalnins [5] by treating the system of equations as a series of initial-
value problems. The method of asymptotic integration of differential equations with a
large parameter has long been used in boundary layer theory in fiuid mechanics. It has
also been widely employed recently in the study of thin plates [6] and shells |2, 7].

The present asymptotic solutions are exact and applicable to conical shells when

1t 2t )
[ﬁ'(—RCOSd ] < 1.

When the above parameter is very small (as were those given in the example) the present
explicit solutions will provide a good approximation for conical shells of constant thickness.
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The following facts are not new but should be noted with interest. The moments and
shearing forces due to the bending effect are of higher order than those of membrane stresses.
However, the membrane stress N, induced by the bending effect is of the same order as
the other membrane stresses. Thus, solutions of the membrane theory alone not only
make the solutions incompatible with kinematic boundary conditions, but also introduce
some non-negligible errors in the membrane stress N,

Acknowledgements—The author wishes to thank Mr. H. Y. Chu for his assistance particularly in the programming
of the numerical computations involved and to Dr. W. D. Jordan for reading over the manuscript and for the
suggestions he made.
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Résumé—La solution de couches coniques d’une épaisseur linéaire variable est épinglée sur une équation carac-
téristique de huitiéme degré. Dans ce rapport, une méthode pour résoudre cette équation est présentée, et résulte
en une solution générale asymptotique. La solution particuliére due & une charge latérale normale constante aux
méridiens et ayant une distribution sinusoidale dans la direction circonférentielle, est donnée; est également inclu
un exemple illustratif d’un cone semi-circulaire qui est simplement supporté le long de deux générateurs et ayant
une extrémité fixée et 'autre libre.

Zusammenfassung—Die Losung elastische Kegelschalen mit linear variabler Dicke hingt ab von einer charak-
teristischen Gleichung achten Grades. In der Arbeit wird eine Methode zur Losung dieser Gleichung gegeben ;
das Resultat ist eine allgemein asymptotische Losung. Eine Losung des besonderen Falles einer seitlichen
Normallast die den Meridianen entlang konstant ist und in der Umfangsrichtung eine sinusférmige Verteilung
hat wird gegeben. Ferner wird als Illustration ein Beispiel eines halbrunden Kegels gegeben der an zwei Genera-
toren entlang gestiitzt wird, wobei das eine Ende fest ist und das andere frei.

AGcTpakT—Pellienne 21aCTHYECKHX KOHHYECKUX 060J10Y€eK JTMHEHRO pa3HOOOPA3IHON TOMUKHBL 3aBUCAT OT
XapaKkTEPHCTHYECKOrO ypaBHEHHS BOCBMOIO Topsiaka. B 3r1oi crathe naércs meroa pelleHds 3TOro
ypaBHeHHs, B PE3y/bTaTe KOTOPOro nonyyaeTcs obuee acumMnroTHyeckoe petueHne. Tlpennaraercs ocoboe
peuwenre, obycnoaeHHoe GOKOBON HOPMaNbHOM HArpy3koi, koTopas MOCTOSHHA BAOJAb MEPHAHAHOB W
HMEET CHHYCOMIANILHOE PacrlpOCTPaHEHUe B KPYTOBOM HanpaBneHuu. Biumiouén Takxke MOSCHMTE/IbHbIH
NpAMeEp NOJyKPYIJIOrO KOHYCA, KOTODPbIi MPOCTO MOANEPKHUBAETCA BAO/bL ABYX [EHEPATOPOB C OAHHM
3aKPEIUIEHHBIM ¥ JPYrHM CBOGOAHBIM KOHLIOM.



